develop
Register Today!
Fauna logo
Product
Solutions
Pricing
Resources
Company
Log InGet a DemoStart free trial
Fauna logo
Pricing
Customers
Log InGet a DemoStart free trial
© 0 Fauna, Inc. All Rights Reserved.

Start for free

Sign up and claim your forever free Fauna account
Get started

Table of Contents

fauna-serverless-framework

Building a REST API with AWS Lambda, Fauna, and Serverless Framework

Shadid Haque|May 4th, 2022
This tutorial teaches you how to build a serverless REST API using AWS Lambda and Fauna (as your database). You use the Serverless Framework as your infrastructure as code for this tutorial.

Create a new Serverless project

Create a new serverless project by running the following command to get started.
$ serverless create --template aws-nodejs
Notice that we are using the aws-nodejs template. This scaffolds a lot of code for you, so you don't have to write everything from scratch.
Next, add serverless-fauna and serverless-dotenv-plugin as dependencies on your project.
$ npm i severless-fauna serverless-dotenv-plugin --save

Configure Fauna resources

Open the project in your favorite code editor. Open the serverless.yml file and add the following code.
service: fauna-serverless-v2

frameworkVersion: '3'

# Specify donenv
useDotenv: true

# Add Fauna plugin
plugins:
  - serverless-dotenv-plugin
  - serverless-fauna

# Define Fauna resources
fauna:
  client:
    secret: ${env:FAUNA_ROOT_KEY}
    domain: ${env:FAUNA_DOMAIN}
  collections:
    Books: 
      name: Books

provider:
  name: aws
  runtime: nodejs12.x
  httpApi:
    cors: true
You define all the Fauna resources you want to create in the YML file. For instance, in the previous code block, you create a new Book collection.
Next, head over to Fauna and create a new server key for your database. Create a new .env file at the root of your project. Add the Fauna key and domain as environment variables.
FAUNA_ROOT_KEY='fnA.............'
FAUNA_DOMAIN='db.us.fauna.com'

Configure AWS Lambda

Next, add the Lambda configuration to your YML file. Add the following code snippet to your YML file.
# ...partials of serverless.yml
# ...

provider:
  name: aws
  runtime: nodejs12.x
  httpApi:
    cors: true

# Define lambdas
**functions:
  book:
    handler: handler.book 
    events:
      - httpApi:
          path: /books/{id}
          method: get
  createBook:
    handler: handler.createBook
    events:
      - httpApi:
          path: /books
          method: post
  deleteBook:
    handler: handler.deleteBook
    events:
      - httpApi:
          path: /books/{id}
          method: delete
  updateBook:
    handler: handler.updateBook
    events:
      - httpApi:
          path: /books/{id}
          method: put**
In the previous code snippet, you create a Lambda function to handle Create, Read and Update and Delete scenarios.

Write Lambda code

Next, write the code for your Lambda functions. You need the faunadb drive to connect to Fauna from your Lambda functions. Install the faunadb package in your project.
$ npm i faunadb --save
Open the handler.js file and add the following code snippet. In the following code snippet, you initialize the Fauna driver. Then you create functions to query and insert data to Fauna.
// handler.js

// import faunadb driver
const faunadb = require('faunadb')
const q = faunadb.query;

// initialize fauna client
const serverClient = new faunadb.Client({ 
  secret: process.env.FAUNA_ROOT_KEY,
  domain: process.env.FAUNA_DOMAIN,
});

// Create Book Route
module.exports.createBook = async (event, context, callback) => {
  const data = JSON.parse(event.body);
  try {
    const newBook = await serverClient.query(
      q.Create(
        q.Collection('Books'),
        { data },
      )
    )
    callback(null, {
      statusCode: 201,
      body: JSON.stringify(newBook)
    }); 
  } catch (error) {
    throw new Error(error)
  }
}

// Get Book
module.exports.book = async (event, context, callback) => {
  try {
    const book = await serverClient.query(
      q.Get(
        q.Ref(q.Collection('Books'), 
        event.pathParameters.id
        )
      )
    )
    callback(null, {
      statusCode: 200,
      body: JSON.stringify(book)
    }); 
  } catch (error) {
    throw new Error(error)
  }
}

// Delete Book
module.exports.deleteBook = async (event, context, callback) => {
  try {
    const book = await serverClient.query(
      q.Delete(
        q.Ref(q.Collection('Posts'), 
        event.pathParameters.id
        )
      )
    )
    callback(null, {
      statusCode: 204,
      body: JSON.stringify(book)
    }); 
  } catch (error) {
    throw new Error(error)
  }
}

// Update Book
module.exports.updateBook = async (event, context, callback) => {
  const data = JSON.parse(event.body);
  try {
    const book = await serverClient.query(
      q.Update(
        q.Ref(q.Collection('Books'), event.pathParameters.id),
        { data },
      )
    )
    callback(null, {
      statusCode: 201,
      body: JSON.stringify(book)
    }); 
  } catch (error) {
    throw new Error(error)
  }
}
To learn more about how the Fauna driver works, head to the official documentation page. The Fauna driver is also available in other languages such as C#, Java, Scala, and Go.

Deploy your stack

Deploy your stack by running the following command.
$ sls deploy
Once everything is deployed your API will be live.
And that’s a wrap. Check out the Fauna official documentation page to learn more about Fauna. Want to learn more about the Serverless Framework? Check out their official documentation page. You can find the complete code in the following git repository.

If you enjoyed our blog, and want to work on systems and challenges related to globally distributed systems, serverless databases, GraphQL, and Jamstack, Fauna is hiring!

Share this post

‹︁ PreviousNext ›︁

Subscribe to Fauna's newsletter

Get latest blog posts, development tips & tricks, and latest learning material delivered right to your inbox.